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1.0  Introduction

In the study of noise from high speed surfaces, one needs to evaluate integrals 
involving  where  or  is a stationary or moving 
surface on which acoustic sources lie. For example, consider the thickness 
noise term of the Ffowcs williams-Hawkings (FW-H) equation when we take 
the time derivative explicitly:

(EQ 1)

It is assumed that the function  is so defined that we have  on 

this surface. The local normal velocity of the surface is denoted  given by 

the relation  and a tilde under a symbol indicates restriction of 

the variable to the surface  [1]. This relation shows how the general-

ized function  appears in wave propagation problems as the source term 
of the linear wave equation. We point out two features of Eq. (1). First we 
note that only one of the two normal derivatives multiplying  is 

restricted to the surface . Second, the unrestricted function  also 

appears as a factor of  which can not and should not be set equal to 1.

In this paper, we will first give the interpretation of the following integral
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where we will initially assume that  on the surface . We next 
give two more useful results by first assuming that 

 (EQ 3)

for some arbitrary  function  and then set  on the surface 

.

2.0  Derivation of the Main Result

We use Gaussian coordinates  on the surface  and then extend 
these coordinates along local normals to the space near the surface. Next we 

take . We have

(EQ 4)

Here  is the determinant of the coefficients of the first 

fundamental form in the new variables. The symbol  stands for the 

determinant of the coefficients of the first fundamental form of the surface 

 in variables . Note that in this case, the sur-

face  is parametrized by the surface variables  but the 

function  is dependent on the variables . The variable  

enters this function because it is the value of the constant. In accordance with 
the notation introduced in [1], the prime on  means that it is a function 

of .

Using Eq. (4) on the right side of Eq. (2) gives the following result after inte-

grating with respect to variable : 
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(EQ 5)

Taking the normal derivative in the integrand and using the following result 
from differential geometry [2] 

, (EQ 6)

we get 

(EQ 7)

where  is the local mean curvature of the surface  in Eq. 

(6) and of the surface  in Eq. (7). Here we have used the following 

result for element of the surface area of : 

(EQ 8)

where  is simply the determinant of the coefficients of the first funda-

mental form of the surface  in variables . Equation (7) is the 
main result of this paper. It was first explicitly given by the author in [1]. 
Another way of writing Eq. (7) is 

(EQ 9)

Note that  so that the integral on the right of Eqs. (7) 

and (9) depend on both  and .
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2.1  Special Cases

It can be seen that the integral  of Eq. (2) is not invariant under the change of 

description of the surface . The same surface S defined by two differ-

ent functions  and  will, in general, give two different values 

of . This means that the integrand of this equation, in the form written 
above, does not usually appear in applications. We will next give an integral 
involving  which is invariant under the change of description of the sur-

face . In finding this integral, we have been guided by examples simi-

lar to Eq. (1). If we assume that the function  is given by Eq. (3), then, 
Eq. (7) becomes

(EQ 10)

This is the invariant result that we were seeking as seen from the right side 
since the mean curvature is a quantity that does not depend on the representa-
tion of the surface . In applications, we do get the function  

always multiplying . For example, in Eq. (1), by assumption  

and we see that  does multiply . 

In case we have defined , i.e.,  on , then Eq. (10) 

becomes 

(EQ 11)

This is a very useful result because the assumption of  can consid-

erably simplify algebraic manipulations involving generalized functions [1]. 
The readers may find the applications of this equation to wave propagation 
problems in [1, 2].

Note that in some of the publications of the author, the function  was left 
out of the integrand on the left side of Eq. (11) [1,2]. However, since this 
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function was also left out in the manipulation of the source terms of a wave 
equation, mistaken for  which was assumed equal to 1, the correct final 

results were obtained. The author is deeply indebted to Dr. Alexandre I. 
Saichev of the Radiophysical Department of Nizhni Novgorod University in 
Russia, for bringing this mistake to his attention [3].
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